Flavorant—Solvent Reaction Products and Menthol in JUUL E-Cigarettes and Aerosol

Hanno C. Erythropel, PhD,1, 2 Lucy M. Davis3, Tamara M. de Winter, PhD,2, 4 Sven E. Jordt, PhD,2, 5 Paul T. Anastas, PhD,4, 6 Stephanie S. O’Malley, PhD,2 Suchitra Krishnan-Sarin, PhD,2 Julie B. Zimmerman, PhD1, 2, 4

INTRODUCTION

The “JUUL” e-cigarette is the best-selling e-cigarette on the U.S. market.1, 2 JUUL refill “pods” contain nicotine benzoate salt and flavorants dissolved in a 30:70 ratio of propylene glycol (PG) and glycerol (VG for vegetable glycerin). Nicotine benzoate is perceived as more satisfactory and less harsh, enabling the delivery of higher amounts of nicotine to users. As such, nicotine concentrations in JUUL e-liquids are higher (5%; 3% since August 2018) than in non-JUUL e-liquids (typically 0.3%−2.4%). JUUL e-liquids are available in several fruity flavors, known to be particularly appealing to youth.3 Common e-cigarette (including JUUL) flavorants include menthol and various aldehydes (e.g., vanillin); aldehydes are known to react with alcohols (e.g., PG and VG) to form acetals (structural and optical isomers).4 The inhalational safety of flavor aldehyde PG/VG acetals is unknown; however, a recent study found that several acetals, including vanillin PG acetal, activate pro-inflammatory irritant receptors more strongly than their parent compounds (e.g., vanillin).4, 5 Despite the popularity of JUUL, little is known about the composition of JUUL aerosol. The aim of this study was to evaluate the carryover of vanillin and its reaction products with PG and VG, menthol, and nicotine benzoate from JUUL e-liquid to aerosol to understand potential human exposures.

METHODS

A JUUL device and pods of all eight flavors (Figure 1) were purchased online in 2018. For aerosol capture (both gas phase and microdroplets6), a custom-built vaping machine with liquid nitrogen−chilled traps was used as described previously.7 The puffing regime was 20 puffs of 2.8-second length, 79-mL volume, and a 30-second cooldown between puffs. Neat e-liquids and captured aerosol were diluted and analyzed by gas chromatography mass spectroscopy.8 Commercially available standards were used for quantification except for vanillin VG acetal, which were synthesized in house. Aerosol concentrations and percentage carryover were calculated per experiment by dividing the amount of compound trapped by the pod mass change, and as aerosol concentration over neat e-liquid concentration, respectively (Figure 1).

RESULTS

The reaction products vanillin PG acetal and vanillin VG acetal were detected in JUUL “Crème Brulée” e-liquid and carried over to aerosol at 68±4% (mean±95% CI, all n=3) and 59±20%, or 0.8±0.04 µg/puff and 2.0±0.5 µg/puff, respectively (Figure 1). Vanillin was carried over at 79±17%, resulting in the delivery of 7.9±0.8 µg/puff. Menthol was found in four of the eight tested flavors, and the menthol aerosol concentration of “Classic Menthol” and “Cool Mint” was 34±3 µg/puff and 38±12 µg/puff, respectively, which is comparable to mentholated cigarettes (29−392 µg/puff9 for ten puffs/cigarette; 10%−20% carryover to cigarette smoke9). Nicotine and benzoic acid carryover were 98±6% and 82±5% (5%-pods, n=21), and 102±4% and 80±14% (3%-pods, n=5), respectively. However, a statistical significance between e-liquid and aerosol concentrations was found only for benzoic acid (Figure 1). Absolute nicotine aerosol content (114±13 µg/puff, 5%-pods, 65±15 µg/puff, 3%-pods) was comparable to previous reports analyzing JUUL or combustible cigarettes (50−180 µg/puff; ten puffs/cigarette).10−12

From the1Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut; 2Yale Tobacco Center of Regulatory Science (TCORS), Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut; 3Yale-NUS College, Singapore, Singapore; 4School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut; 5Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina; and 6School of Public Health, Yale University School of Medicine, New Haven, Connecticut
Address correspondence to: Julie B. Zimmerman, PhD, Department of Chemical and Environmental Engineering, Yale University, 17 Hillhouse Avenue, New Haven CT 06511. E-mail: julie.zimmerman@yale.edu. 0749-3797/$36.00
https://doi.org/10.1016/j.amepre.2019.04.004

© 2019 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.
This study is the first to report the presence of flavor aldehyde VG acetals in e-liquids and aerosols and expands the authors’ prior finding of flavor aldehyde PG acetals in commercial e-liquids. JUUL e-liquids contain higher levels of vanillin VG acetals compared with vanillin PG acetal because of the higher VG:PG ratio. Flavor aldehyde–solvent acetal formation can be expected in any e-liquid–containing flavor aldehydes, including JUUL, at room temperature (e.g., without heating in the e-cigarette). Furthermore, the possibility of other unintended chemical reactions between e-liquid constituents should be considered in future research.

Compounds present in JUUL e-liquids are delivered efficiently to the aerosol, exposing users to similar quantities of nicotine as cigarettes, to menthol in four of eight flavors, and to the PG and VG acetals of vanillin (“Crème Brulée”). Although vanillin PG/VG acetal carryover is slightly lower than nicotine, indicating possible acetal hydrolysis, appreciable amounts of acetals are present in the aerosol, which, if inhaled, may cause irritation and contribute to inflammatory responses. The average vanillin puff concentration was 101 mg/m³. In comparison, chronic inhalational exposure to vanillin in occupational environments is limited to 10 mg/m³, raising the question of what long-term effects regular inhalation of vanillin at such doses and frequency (200 puffs/pod) might have. Aerosol menthol levels from “Fruit Medley” (5.3 ppm), which is not labeled as mentholated, and the other mentholated JUUL e-liquids (“Cool Cucumber”: 7.5 ppm, “Classic Menthol”: 63 ppm, and “Cool Mint”: 70 ppm) are sufficient to suppress respiratory irritation responses to aldehydes and tobacco smoke and increase nicotine intake.
Future e-cigarette regulatory policy should address (1) the formation of new compounds with potential toxicologic properties within e-liquids, (2) JUUL menthol levels that may increase nicotine intake, and (3) flavorant exposure effects in e-cigarette users as also recently highlighted by the U.S. Food and Drug Administration.

ACKNOWLEDGMENTS

The authors wish to thank Sofya Zeylikman, BFA, Dante Archangeli, BS, and Larry Wilen, PhD, at the Center for Engineering Innovation & Design within the Yale School of Engineering & Applied Science for their advice and support to design and 3D-print custom-made connector pieces. Ms. Zeylikman, Mr. Archangeli, and Dr. Wilen did not receive compensation.

The funding organization had no role in the design and conduct of the study; the collection, management, analysis, and interpretation of the data; the preparation, review, or approval of the manuscript; nor in the decision to submit the manuscript for publication. The content is solely the responsibility of the authors and does not necessarily represent the views of National Institutes of Health (NIH) or the Food and Drug Administration (FDA).

LMD received funding from the Yale-NUS Summer Research Programme. This work was supported by the National Institute on Drug Abuse of NIH and the Center for Tobacco Products of the U.S. FDA under awards number P50DA036151 and U54DA036151 (Yale Center for the Study of Tobacco Products Use and Addiction: Flavors, Nicotine, and other Constituents; YCSTP).

Author contributions were as follows: HCE, SEJ, PTA, and JBZ conceptualized and designed the study; HCE and LMD acquired and analyzed the data; HCE interpreted the data; HCE and JBZ drafted the manuscript; HCE and JBZ revised the manuscript; HCE carried out statistical analysis; HCE, PTA and JBZ provided supervision; LMD, TMdW, SEJ, PTA, SSO, SK-S, and JBZ critically revised the manuscript for important intellectual content; TMdW supplied technical support; and SSO, SK-S, and JBZ obtained funding.

Dr. Jordt reports receiving personal fees from Hydra Biosciences LLC and Sanofi S.A. and nonfinancial support from GlaxoSmithKline Pharmaceuticals outside the submitted work. Dr. Krishnan-Sarin reports donated study medications from Novartis and Astra Zeneca for research project unrelated to the current work. She was also a member of the FDA Tobacco Product Scientific Advisory committee in 2012–2014 and 2015–2016. Dr. O’Malley reports the following unrelated to the current work: consultant/advisory board member for Alkermes, Amygdala, Indivior, Mitsubishi Tanabe, Opient; a member of the American Society of Clinical Psychopharmacology Alcohol Clinical Trials Initiative supported by Alkermes, Amygdala, Arbor Pharmaceuticals, Ethypharm, Lilly, Lundbeck, Otsuka, Pfizer, and Indivior; donated medications from Astra Zeneca, Novartis, and Pfizer; a grant from Lilly; and Data and Safety Monitoring Board member for the National Institute on Drug Abuse (Emmes Corporation). No other financial disclosures were reported by the authors of this paper.

REFERENCES

